# 石狩川河口砂嘴における2009年から2014年までの 浸食による浜崖後退に係る定点観測結果

Observed position of coastal cliff between 2009 and 2014 in Ishikari estuarine spit, Hokkaido, Japan

内藤 華子<sup>\*1</sup>・寒河江 洋一郎<sup>\*2</sup>・藤 彰矩<sup>\*3</sup> Hanako NAITO<sup>\*1</sup>, Yoichiro SAGAE<sup>\*2</sup> and Akinori FUJI<sup>\*3</sup>

#### 要 旨

石狩川河口砂嘴において,2009年から2014年,浜崖上部に定点8か所を設け杭を設置し,浸食による 浜崖後退距離をおもに秋と春に計測した。2009年秋から2012年春までの3シーズンにわたる冬期間,地 点により差があるものの,すべての地点で4m以上の後退があり,最大で17m以上の後退を確認した。 2012年春以降は微減が続く箇所がある一方で,砂嘴先端部側に近い4か所の定点では,2011年春以降, 浜崖の後退はほとんどなく,浜崖後退により消失した砂丘跡にできた砂浜に,ハマニンニクを主体とする 植生が再生してきている。

キーワード:石狩川河口砂嘴、定点観測、浸食、浜崖後退、植生再生

#### はじめに

浜崖とは,砂丘が波によって浸食されてできた ほぼ垂直な斜面で,石狩川河口左岸砂嘴では, 2005年前後から,顕著に見られるようになった (図1,写真1).1990年代前半,砂嘴中央部の 海側の砂丘頂部から陸側斜面にかけて生育してい たハマナスの群生箇所は,海をバックにしたハマ ナスの撮影ポイントとして当時のパンフレットに も記載されていたが,この群落は,2005年頃より 徐々に浸食により縮小し,現在では完全に消失し ている.このことは,当エリアを自然観察する者 の多くが知るところでもある.また,著者の寒河 江は,2004年の自然観察会に参加し,このハマナ ス群落を含む砂丘の海側斜面が残っている風景を 撮影している(写真2).

1989年の石狩川河口地域植物調査報告に用いら れた地形図と、2009年の石狩市土地情報図を比較 すると、浜崖の位置が25m程度後退していること が読み取れる.また、これにより、ハマニンニク-コウボウムギ帯の消失が進み、これらと同所的に 生育するハマボウフウが減少していることが報告



図1. 砂浜海岸に見られる様々な微地形. (北海道環境環境科学研究センターほか、2006)

<sup>\*1</sup> いしかり海辺ファンクラブ 〒061-3377 北海道石狩市親船町23 いしかり海辺ファンクラブ気付

<sup>\*2</sup> 石狩浜海浜植物保護センター ボランティア 〒061-3372 北海道石狩市弁天町48-1

<sup>\*3</sup> 石狩浜海浜植物保護センター 〒061-3372 北海道石狩市弁天町48-1



写真1. 石狩川河口砂嘴の浜崖. 2014年11月撮影; 1990年代に見られた砂丘の陸側斜面まで浸食され ている.

されている(石狩浜海浜植物保護センター, 2012).

石川(2013)は、GPSを用いた踏査から得られ たデータをもとに、2009年から2012年の石狩川河 口砂嘴の海岸線の位置変化を調べ、この中で浜崖 位置の後退を報告している.

石狩浜海浜植物保護センターでも2009年,定点 を設けて,浜崖の位置の変化を把握する調査を 行ってきた(石狩浜海浜植物保護センター, 2011).2012年以降,筆者らはこの定点観測を引 き続き行い,2014年までのデータを得たので,こ こに報告する.

## 調査地域



調査対象地域

# 方石潮川

2009年10月,浜崖を歩き100~200m間隔に観 測**承狩湾新港**をA~Hの8か所設け,浜崖の際から 内陸側へ海岸線に対して直角方向となるよう,0 m,2m,4mまで木杭を立てた(図3).浸食 図2.調査地域



図3. 定点観測ポイント位置.



写真2.2004年の自然観察会で撮影した,砂嘴中央 部の砂丘頂部のハマナス群落(右奥・点線囲部)と 海側斜面(後述のF地点付近).



图2.調查地域

が進んで杭が失われた場合は,新たに内陸に杭を 設置した.また,すべての杭が一度に失われた場 合は,GPSを用いて浸食距離を推定し,新たに杭 を設置した.

観測は、2009年10月から2011年春までは月1 回の頻度で、2011年以降は秋(10~11月)と春 (3~4月)に実施した.それらに加えて、記録 写真撮影のために適宜踏査した.

## 結果

## 地点A

2009年秋から2010年春にかけての冬期間に浸食 により設置杭が失われたが、GPSによる推定によ り、浜崖の後退は推定4mとした.新たに杭を設 置した2010年春以降は、2年間はほとんど変化が なかったが、2012年春から2014年秋まで数十cm 単位で後退している。2009年秋から2014年秋まで の積算後退距離は4.9mで、2009年秋に撮影した 砂丘の海側斜面は消失している(写真3).現在 は砂浜(浜崖直下)から高さ1m以上の明瞭な浜 崖が目視で確認できる.

## 地点B

2009年秋から2010年春にかけての冬期間に約2 m,2011年秋から2012年春にかけての冬期間に約 7 mの浜崖の後退がみられた(写真4).それ以 降も数十cm単位で後退している.2009年秋から 2014年秋までの積算後退距離は10.7mで,現在は 砂浜(浜崖直下)から高さ1 m以上の明瞭な浜崖 が目視で確認できる.

## 地点C

2009年秋から2010年春にかけての冬期間に浸食 により設置杭が失われたが、GPSにより、浜崖の 後退は推定4mとした。新たに杭を設置した2010 年春以降は、2012年秋までの2年半の間に数十 cmの後退だったが、2012年秋から2013年春にか けて、1.3mの浜崖の後退が生じた。それ以降も数 十cm単位で後退している。2009年秋から2014年



写真3. 地点A/2009年秋の砂丘海側斜面. 2014年 秋には左奥の砂丘頂部付近まで浜崖が後退し, この 海側斜面は消失した.

秋までの積算後退距離は6.2mで,現在は砂浜(浜 崖直下)から高さ1m以上の明瞭な浜崖が目視で 確認できる.

## 地点D

2009年秋から2010年春にかけての冬期間に約2 m, 2010年秋から2011年春の冬期間に約3m, 浜 崖の後退があった.それ以降, 2014年秋まで数十 cm単位で後退している.2009年秋から2014年秋 までの積算後退距離は6.7mで,現在は砂浜(浜崖 直下)から高さ1m以上の明瞭な浜崖が目視で確 認できる.

#### 地点E

2009年秋から2010年春にかけての冬期間に約4 m, 2010年春から秋に約2m, 2010年秋から 2011年春にかけての冬期間に約11m, 浜崖の後退 があった(写真5).それ以降の後退は数十cm で,2009年秋から2014年秋までの積算後退距離は 17.4mである.なお,2014年秋には,浜崖の高さ は0.5mほどとなり,浜崖の海側に砂の堆積が見ら れた.堆積砂上には,海と並行に幅9mの帯状 に,ハマニンニクを主体とする植生が再生してい る.

## 地点 F

冒頭で記述した、2005年頃までハマナス群落が



内藤 華子・寒河江 洋一郎・藤 彰矩:石狩川河口砂嘴における2009年から2014年までの浸食による浜崖後退に係る定点観測結果

図4. 調査地点A~Hにおける2009年10月を基準とした2014年10月までの浜崖後退距離.

## いしかり砂丘の風資料館紀要 第5巻 2015年3月



写真10. 地見て1920地点年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏2016年夏

写真11. 地点G/2014年秋の植生再生状況. ハマニ ンニクとコウボウムギが目立つ. 内藤 華子・寒河江 洋一郎・藤 彰矩:石狩川河口砂嘴における2009年から2014年までの浸食による浜崖後退に係る定点観測結果

砂丘頂部に見られた地点である.

2009年秋から2010年春にかけての冬期間に約 10m,2010年秋から2011年春にかけての冬期間 に約2m,浜崖の後退があった(写真6のF). これにより,砂丘の陸側斜面も大きく失われ, 1990年代の砂丘の後背地に浜崖が形成されている 状況となり,浜崖の高さは0.5m程度となった.浜 崖位置はそれ以降変化がなく,2009年秋から2014 年秋までの積算後退距離は12mである.

また,著しい浜崖後退を経た2011年春以降,浜崖 の海側に砂の堆積が見られ,浜崖が不明瞭となり つつあるとともに,堆積砂上には新たにオニハマ ダイコンやハマニンニク等の海浜植物が漸増し, 2014年秋には,浜崖の海側に,海と並行の帯状に 幅15mにわたって,ハマニンニクを主体とする海 浜植生が再生している(写真7).

#### 地点G

2009年の観測地点設定時,すでに1990年代に見 られた砂丘が大きく失われ,当時の砂丘の陸側斜 面に浜崖ができている状況にあった.

2009年秋から2010年春にかけての冬期間にも大 きな浜崖の後退が見られ,設置杭が失われ,GPS により,浜崖の後退は13mと推定した(写真6の G).これにより浜崖の高さは数十cmとなった. 2010年春以降浜崖の後退は生じず,2009年秋から 2014年秋までの積算後退距離は推定で13mであ る.

浜崖の後退が生じなくなった2010年春以降は, 浜崖の海側に砂の堆積が見られ,浜崖が不明瞭と なりつつあるとともに,堆積砂上には新たにオニ ハマダイコンやハマニンニク等の海浜植物が漸増し た(写真8~11).2014年秋には,浜崖の海側 に,海と並行の帯状に幅30mにわたって,コウボ ウムギやハマニガナが混じるハマニンニク帯が成 立している.

#### 地点H

地点G同様,2009年の観測地点設置時,すでに 1990年代に見られた砂丘は失われ,当時の砂丘の 陸側斜面に浜崖ができている状況にあった.

2009年秋から2010年春にかけての冬期間にも大 きな浜崖の後退が見られ,設置杭が失われ,GPS により,浜崖の後退は10mと推定した(写真6の H).これにより浜崖の高さは数十cmとなった. 2010年以降浜崖の後退は生じず,2009年秋から 2014年秋までの積算後退距離は推定で10mであ る.

浜崖の後退が生じなくなった2010年春以降は, 浜崖の海側に砂の堆積が見られ,浜崖が不明瞭と なりつつあるとともに,堆積砂上には新たにオニ ハマダイコンやハマニンニク等の海浜植物が漸増 し,写真8~11に示すG地点と同様の遷移をた どった.2014年秋には,浜崖の海側に,海と並行 の帯状に幅35mにわたって,コウボウムギやハマ ニガナが混じるハマニンニク帯が成立している.

## 考察

浜崖の後退は,おもに秋から春に発生していた.

まず,2009年秋から2010年の春にかけて,すべ ての調査地点で2m以上の浜崖の後退が見られ, 特に砂嘴先端に近いほど10m以上の著しい浜崖の 後退が見られた.それ以降,ひと冬2mを超える 後退は,2010年秋から2011年の春までにD,E, 2011年秋から2012年春までにBで局所的に見られ たが,2012年の春以降は,短期的な2mを超える 浜崖の後退は発生していない.GPSロガーを用いて 浜崖の位置変化を調べた石川(2013)において も,同様の傾向が報告されている.

以上より,石狩川河口砂嘴において浜崖の後退 が必ずしも毎年起こっているものではないことが わかった.2009年以前の定量データはないが,浜 崖の後退は,ある数年の期間に集中して生じてい る可能性が考えられる.石川(2013)では,浜崖 の後退をもたらす波による浸食作用の発生要因と して,沿岸の海底地形の動きと連動した離岸流・ 向岸流の発生や,波浪を伴う低気圧の通過を挙げ ている.



図5. E~H周辺で見られた砂丘地形の変化の模式図.

ところで、砂嘴先端側E~Hでは、浜崖が後退 した後、浜崖が後退した分に相当する広さの砂浜 が平坦に広がるとともに、浜崖下に新たに砂が堆 積し、浜崖後退1年後から植生が見られるように なり、2014年時点では、そこにハマニンニク、コ ウボウムギ、ハマニガナが優占する植生が再生して きた(図5).すなわち、浜崖の後退は、必ずし も海岸線の後退を意味するものではない.

特に一時的で突発的な浜崖の後退においては, 砂丘植生は失われるが,地下茎伸長による栄養繁 殖能力の高いハマニンニク,コウボウムギ,ハマニ ガナなどが背後に生育する場合,または,浸食よ り崩れた砂丘砂に地下茎が含まれる場合は,浜崖 下の砂浜に,2~3年で植生が再生することがわ かった.ただし,ハマナスは,浜崖後退により失 われた後,再生している箇所は現時点では確認で きなかった.ハマニンニク,コウボウムギ,ハマニ ガナ等の先駆種は,葉による捕砂や地下茎伸長に より砂地の安定化を促進する.これにより,再び 砂丘が形成される可能性もあり,また,ハマナス など安定した砂地を好む種が遅れて再生してくる 可能性もある.

石狩川河口砂嘴の浸食は,2012年以降小康状態 にあるが,これが一時的なもので今後また浜崖の 後退が進むのか,それとも,今後は砂の堆積と植 生の再生が進むのか,継続した観測,調査により 明らかになっていくであろう.石狩川河口砂嘴 は,絶滅危惧種イソスミレの群生(内藤・寒河 江、2014)や、ハマナスの純群落など、全国的に も貴重な海浜植物群落が維持されている。これら の保全を考える上でも、浜崖の後退に係るモニタ リングは重要である。

## おわりに

石狩川河口砂嘴の浜崖位置の変化は、石川 (2013)にも報告されており、本報告は、その補 完とその後の経過の追加報告となる.今後も、定 点観測の継続が、石狩川河口砂嘴の地形と植生の 動態を考察する一助になれば幸いである.

## 引用文献

- 北海道環境科学研究センター・北海道立林業試験場・北 海道立地質研究所・石狩市海浜植物保護センター, 2006.北海道の海浜保全再生マニュアル.北海道環 境科学研究センター.
- 石狩浜海浜植物保護センター,2011.はまなすの丘海 岸線浸食状況調査.平成22年度石狩浜海浜植物保護 センター活動報告書,9-10.
- 石狩浜海浜植物保護センター,2012. 石狩川河口砂嘴 における植生分布の変化. 石狩浜海浜植物保護セン ター調査研究報告,10:1-7.
- 石川治,2013.GPSロガーを用いた石狩川河口砂嘴の 地形変化の調査.いしかり砂丘の風資料館紀要, 3:43-53.

内藤華子・寒河江洋一郎, 2014. 石狩川河口砂嘴にお

内藤 華子・寒河江 洋一郎・藤 彰矩:石狩川河口砂嘴における2009年から2014年までの浸食による浜崖後退に係る定点観測結果

けるイソスミレの1989年と2012-2013年との分布比 較.いしかり砂丘の風資料館紀要,4:31-39.